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Abstract-The possibility is discussed for determination of chemical potential (electronegativity) of an elec-
tron3nucleus system in terms of the quantum-mechanical density functional theory (DFT). The principle of
complete leveling of chemical potentials of natural orbitals, formulated in the framework of DFT, cannot be
regarded now as justified. The calculation of electronic chemical potential via difference schemes still remains
the only procedure suitable for estimation of this quantity by quantum-chemical methods.

Electronegativity (EN) is one of the oldest terms
of theoretical chemistry. However, up to now, it has
not received a clear and unequivocal interpretation.
We previously [1, 2] made an attempt to follow the
development of the concepts of atom and group ENs
and, by summarizing the available data, isolated two
approaches to determination of ENs of substituents,
which were arbitrarily referred to as formal and
quantum-chemical. The calculation schemes [234] of
the formal approach are based on postulates of the
theory of chemical structure, and the orbital EN of
a substituent is expressed through valence state
parameters of the atoms constituting that substituent,
namely through their orbital chemical potentials (CP)
and orbital hardnesses, using the principle of leveling
of orbital CPs of a bond. In these schemes, the equi-
librium orbital CPs of different bonds of a substituent
and the orbital CP of its unsaturated bond (which is
the same as group EN) do not coincide with each
other. The calculation schemes [538] utilizing the
Sanderson principle [9] of complete leveling of atom
ENs upon formation of covalent bonds are considered
separately, for they are based on the [atom in a mole-
cule] model which has nothing in common with the
concept of valence states of atoms within the theory
of chemical structure. Here, each atom of a substituent
has a fractional charge and is characterized by electron
CP, while equilibrium electron CPs of fictitious atoms
are similar to each other and are equal to the group
EN taken with the opposite sign. It should be noted
that the authors of the above schemes use the term EN
and speak about leveling of atom ENs, which distorts
the sense of the term atom EN formerly introduced
by Pauling [10]. As we stated in [2], both theoretical
and practical values of such schemes are more than

doubtful. In the present work we shall turn back to
the discussion of this problem.

In the framework of quantum-chemical approach,
the orbital EN of a substituent (c) is equated to CP of
its electron subsystem (m):

c = 3m, m = (§E/§N)v. (1)

Here, E is the energy of the ground electronic state,
N is the number of electrons, and v(r) is the electro-
static nuclear potential which depends on the charges
and geometry of the stationary nuclear subsystem
[2, 11]. The electron CP, which can be calculated by
variational quantum-chemical methods, characterizes
the ground electronic state of an atom, molecule, or
radical at a specified (but not necessarily equilibrium)
geometric configuration of nuclei. Therefore, non-
empirical calculation of group ENs is implicitly based
on the assumption that valence state of a substituent
can be simulated through the ground electronic state
of the same group of atoms at a nonequilibrium con-
figuration of nuclei, which reproduces the standard
substituent geometry in various molecules. Definition
(1) still does not provide an algorithm for calculation
of electron CP of a system. For this purpose, it is
necessary to formulate rules of formal energy dif-
ferentiation with repsect to the number of electrons or
to develop calculation schemes which do not involve
such differentiation in the explicit form. At present,
this quantity is usually estimated by interpolation
using formula (2) [2, 12]:

m = 1/2[E (N + 1) 3 E (N 3 1)]. (2)

In the present article we consider possible ways
of estimating the electron CP in terms of the density
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functional theory. This theory was introduced in 1964
by Hohenberg and Kohn [13]. The authors proved that
there exists a correspondence rule which relates any
v-representable density function,* normalized with
respect to N, to a unique energy value which charac-
terizes the ground state of a system with the given N
and v (r). This rule is written as EHK[r] functional
which, at fixed N and v (r), has the lowest value with
the density function of the ground state of a system
with the given N and v (r):

E0(N, v) = inf EHK[r]. (3)
r�NHK

Here, the set NHK is limited by those test functions
v (r) which are normalized with respect to N and are
v-representable. It should be noted that the Hohen-
berg3Kohn theorems were proved for a family of
Hamiltonians which differ only by external (nuclear)
potentials v (r) and have nondegenerate ground states
whose wave functions belong to a single antisym-
metric Gilbert space. Search for a constrained ex-
tremum of the energy functional EHK[r] is performed
by the Lagrange undetermined multiplier procedure.
Thus practical application of the Hohenberg3Kohn
variational principle (3) requires that the NHK set be
defined and precise mathematical expression for
EHK[r] be found. Up to now, both these problems
have not been solved in explicit form; therefore,
approximated functionals (which may be represented
in an analytical form) are always used in practice,
and only normalization requirement is imposed on
a class of variable v (r) while deducing Euler3
Lagrange equation for one or another approximation.
Such variational procedure underlies the approximate
density functional theory formulated first by Hohen-
berg and Kohn for heterogeneous electron gas [13].
The main purpose of this theory is to develop approxi-
mations for EHK[r] which could ensure physically
meaningful description of complex molecular systems.
The energy and density of the ground state for each
approximation can be determined by solving the
Euler3Lagrange equation

§ � � ��
ÄÄÄÄ �EHK[r] + m�N 3 I § r r(r)�� = 0
§r(r) � � ��

____________
* Density function derived from antisymmetric N-electron wave

function by the formula

r(r1) = N S IY(x1, x2, ..., xN)Y*(x1, x2, ..., xN)§r2 ...§rN
s1, ...,sN

is referred to as an N-representable function. An N-represent-
able function is also a v-representable one provided that it
originates from an antisymmetric N-electron wave function of
the ground state of an adiabatic Hamiltonian with some v(r).

with the constraint

I r(r) § r = N. (4)

The Lagrange multiplier m at normalization require-
ment (4) is equated to the electron CP of the ground
state of a system [14].

In 1978, Donnelly and Parr [15] generalized the
Hohenberg3Kohn theorem and formulated a varia-
tional principle for energy functional from the gen-
eralized density function or reduced first-order density
matrix g1(x; x`). The principal postulates of this
concept were analyzed by Valone [16, 17] who re-
formulated the Donnelly3Parr theory without resorting
to the presently unknown v-representability condition.
While operating with the finite molecular orbital
basis, a conclusion was drawn [15317] that the ground
state of a molecule with closed electron shells is
described by a set of canonical orbitals fk (r) which
are defined by Eqs. (5):

(hr1)fk = ek fk, ek = m fk, 0 < fk < 2, k = 1, 2, ..., n. (5)

Here, r1 is the Hermitean density operator with the
kernel r1(r; r`), fk are the eigenvalues of r1 (assum-
ingly fractional), and h is the Hermitean operator with
the kernel h (r; r`), which is defined as variational
derivative of energy with respect to r1(r; r`). By
definition, operator h has degenerate eigenvalues mk
which are equal to the electron CP of the ground state
of a molecule. This may be rewritten as follows:

§E
mk = ÄÄÄ = m, k = 1, 2, ..., n. (6)

§ fk

Identity (6) demonstrates leveling of the orbital
electron CPs mk in the ground state of a molecule.
This result was interpreted in [15] as a physical sub-
stantiation of the principle of leveling of atom ENs,
which was postulated by Sanderson [9], and as a sup-
port for calculation schemes utilizing that principle.
Some other extensions of Eqs. (5) and (6) were dis-
cussed by Donnelly [18].

However, it should be noted that physical sense of
the Donnelly3Parr theory cannot be regarded as
acceptable unless the validity of Eqs. (5) and (6) is
confirmed. Up to now, the question as to whether
physically admissible solutions of these equations
exist has no answer. In the present article we discuss
this problem in terms of the functional N-represent-
ability condition [19, 20]. The article is organized
as follows. The first section contains a detailed con-
sideration of Valone’s formulation of the Donnelly3



RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 38 No. 12 2002

ELECTRONEGATIVITY IN QUANTUM CHEMISTRY 1721

Parr theory with an emphasis given to unproved
postulates of that theory and its other weak points.
The main of these is parametrization of the two-elec-
tron part of the precise energy functional, which
violates functional N-representability. In the second
section we propose two possible parametrizations for
the Donnelly3Parr functional and show, using the
simplest molecules with closed shells as examples,
that the Euler3Lagrange equations obtained in the
framework of the proposed approximations have no
solution among N-representable density matrices. This
means that the equation of the orbital electron CPs
of various molecules implies a nonphysical density
matrix and that the corresponding Euler3Lagrange
equations cannot be applied to determination of elec-
tron CP of a system. Finally, we give some important
extensions of the calculation results.

Donnelly3Parr theory. Quantum mechanics of
isolated molecules deals with energy functionals (7)
which are defined as an anticipated value of the
Hamiltonian Hv for a state described by N-electron
wave function Y(x1, x2, ..., xN), which belongs to
a continuous set LN:

<Y³Hv³Y>
E = Ev [Y] = ÄÄÄÄÄÄÄÄÄ . (7)

<Y³Y>

Here, xi is a combination of spatial and spin coor-
dinates of an ith electron; the spatial coordinates r =
(x, y, z) are continuous, while the spin coordinate has
only two possible values, 1/2 and 31/2. The Hamilton
operator looks as follows:

Hv = S hv(ri) + S Sg (ri, rj); (8)
i = 1 i = 1 j = i + 1

hv (r) = 31/2B2(r) + v (r); (9)

g (ri, rj) = ³ri 3 rj³
31. (10)

The operator v (r) is an external Coulomb potential
created by fixed nuclei. The subscript [v] in Hv and
hv indicates that two N-electron systems can differ
only by external potentials. For the sake of simplicity,
let us presume that v (r) has no space symmetry. Then,
stationary states are unambiguously defined by the
energy E and spin quantum numbers S and M which
determine the spin symmetry. The ground state of
a molecule is described by nondegenerate eigenfunc-
tion of operators Hv, S 2, and Sz; it conforms to the
variational principle represented by Eq. (11):

<Y³Hv³Y>
E0 = ÄÄÄÄÄÄÄÄÄ = inf Ev[Y]. (11)

<Y³Y> Y�LN

Here, the set LN is limited by those test functions Y
which are antisymmetric with respect to permutation
of the coordinates (both spatial and spin) of any two
electrons and which have a spin symmetry corre-
sponding to the ground state being defined. In prac-
tice, Eq. (11) is solved by the linear variational
method with the use of molecular orbitals.

Let {jk (r)}n
k = 1 with n >> N be a finite set of ortho-

normal molecular orbitals which constitute an n-di-
mensional Cartesian space En. By setting En we can
built up the direct sum E2n = En�En

E2n = {c (x)³c (r, 1/2) = c1
a (r); c (r, 31/2) = c2

b (r)},

c1
a (r), c2

b (r) � En ,

and define spin3orbitals which form the basis in E2n:

jk
a (r) = jk (r) a(s) � E2n, k = 1, ..., n;

jk
b (r) = jk (r) b(s) � E2n, k = 1, ..., n.

Next, let us built up a complete set of orthonormal
N-electron configurations Fk (x1, x2, ..., xN) having
the same spin symmetry as that of the ground state.
Each of these configurations is a linear combination
of Slater’s determinants [21]. The number of Fk con-
figurations depends upon n and required spin sym-
metry. Suppose that all possible N-electron configura-
tions have been obtained. The set {Fk}

M
k = 1 constitutes

a finite subspace of an antisymmetric Gilbert space of
N-electron wave functions; this subspace is identified
as the set of test wave functions LN [Eq. (12)]:

LN = {Y³Y = S Ck Fk }. (12)
k = 1

The linear variational method based on the above
definition of LN reduces Eq. (11) to linear algebraic
system (13):

M

S <Fi³Hv 3 E³Fj> Cj = 0, i = 1, ..., M. (13)
j = 1

System (13) defines the complete set of stationary
states Yk in LN, which follow in the order of increas-
ing energy. The set {Fk}

M
k = 0 is complete from the

viewpoint implying that there is an unambiguous cor-
respondence between the stationary points of Ev[Y]
functional in the LN space and wave functions which
conform to Eqs. (13). Insofar as LN is equated to
a finite subspace of the antisymmetric Gilbert space,
the linear variational procedure gives the upper limit
of the precise energy of the ground state and provides
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the possibility for systematic approximation refine-
ment through extension of the molecular orbital basis
and hence of the set of possible N-electron configura-
tions. Solutions of Eqs. (13) can be regarded as
precise eigenfunctions of a hypothetical N-electron
system with a Hamiltonian Hv

M defined as an M-rank
projection of the Hv operator onto the LN space:

M M

Hv
M = S S<Fi³Hv³Fj>³Fi><Fj³.

i = 1 j = 1

Once the molecular orbital basis has been selected,
functional (7) may be written in the form

<Y³Hv
M³Y>

E = Ev
M [Y] = ÄÄÄÄÄÄÄÄÄ , \/-Y � LN.

<Y³Y>

Then, Eqs. (13) become equivalent to variational
principle (14):

<Y0³Hv
M³Y0>

E0 = ÄÄÄÄÄÄÄÄÄÄÄ = inf Ev
M[Y]. (14)

<Y0³Y0> Y�LN

In this context, precise Hamiltonian (8)3(10) may
be represented as the limit

Hv = lim Hv
M.

M 6i

A fundamental postulate of the Donnelly3Parr
theory [15] is the existence of such energy functional
from the first-order density matrix g1(x; x`) � NN that

E0 = inf Ev
M [Y] = inf En

DP [g1] (15)
Y�LN g1�NN

for any finite molecular orbital basis. Here, NN is
the set of physically admissible first-order density
matrices, and n is the dimensionality of the orbital
basis set. This statement was clearly formulated by
Valone [16, 17] using density matrices of mixed states
(which are also referred to as ensembles). Following
Valone, let us consider a hypothetical N-electron
system with a Hamiltonian Hv

M. Stationary state of
a system is called pure, if it is an eigenfunction of
Hv

M, and mixed, if it is described by a density matrix
G belonging to the set DN [Eq. (16)]:

M31

DN = {G³G = S wk Yk (x1, ..., xN)Yk
* (x`1, ..., x`N) },

k=0

M31

wk > 0, S wk = 1. (16)
k=0

By definition, G is an antisymmetric kernel of
a positive Hermitean operator acting in LN; wk and Yk
are eigenvalues and eigenfunctions of G. According
to Eq. (16), the mixed state is determined by the
probabilities for the system to exist in the pure states.
From the geometric viewpoint, the density matrix G
is a point with the coordinates w0, w1, ..., wM3 1,
which belongs to an M-dimensional Cartesian space
UM, and the set DN � UM is a convex polyhedron
whose apices coincide with the points of pure states
[22]. The energy of the ensemble G(wk) � DN is
defined by the expression

M31

E = tr (Hv
MG) = S Ek wk , \/-G � DN , (17)

k=0

where E0, E1, ..., EM3 1 are the energies of the pure
states. Equation (17) sets a hyperplane PE in the
space UM ; the intersection

DN (E) = PE � DN

is a limited convex polyhedron containing ensembles
with the same energy E. Thus the set DN is divided
into nonintersecting subsets

DN = �DN (E),
E

where E monotonically increases from E0 to the
maximal value EM3 1. Assuming that the mixed states
described by Eq. (16) are feasible from the physical
viewpoint, the subset DN (E) represents the energy
level E of the system. It should be noted that the
energy level of the ground state (E0) is not degenerate,
while any higher energy level E0 + §E is represented
by an infinite set of ensembles (except for the EM3 1
level). Taking into account that the Hamiltonian Hv
[Eqs. (8)3(10)] contains only one- and two-electron
operators, the energy of the ensemble G � DN can be
expressed through reduced density matrices g1 and g2,
derived from G. This may be written as follows:

E = tr (Hv
MG) = tr (HvG) = tr (hv g1) + tr (g g2), \/-G � DN ;

(18)

tr (hv g1) = S I § r[hv (r) g1 (x; x`)]s`= s; r`= r; (19)
s

tr (g g2) = S I § r1S I § r2[g (r1, r2) g2 (x1, x2; x`1, x`2)].
s1 s2 (20)

Here,

g1 (x; x`) = N S I § r2...§ rNG(x1, x2, ..., xN; x`1, x`2, ..., x`N)
s2, ...sN (21)
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(which is called a first-order density matrix or
1-matrix) is the Hermitean kernel of one-electron
density operator acting on E2n, and

g2 (x1, x2; x`1, x`2) = (2
N)S I § r3...§ rN

s2, ...sN

0 G(x1, x2, x3, ..., xN; x`1, x`2, x`3, ..., x`N) (22)

(called a second-order density matrix or 2-matrix) is
the antisymmetric Hermitean kernel of two-electron
density operator acting in E2n�E2n. The g1 and g2
matrices derived from a single G � DN are related to
each other through expression (23):

2
g1 (x; x`) = ÄÄÄÄÄ S I § r2 g2 (x1, x2; x`1, x`2). (23)

N 3 1 s2

Using the Fock expression for S 2 operator [23]

N31 N

S 2 = 3/4 N 3 S S{1/2 3 [si, sj]}, (24)
i=1 j= i+1

we obtain [Eqs. (25a), (25b)] that the spin symmetry
of the G � DN ensemble is also determined by the
reduced density matrices g1 and g2 derived from G:

<S 2> = S (S + 1) = 3/4 tr (g1) 3 tr ({1/2 3 [s1, s2]}g2);
(25a)

<Sz> = M = tr (sz g1). (25b)

Here, [si, sj] denotes transposition of the spin
variables si and sj. As follows from Eqs. (18)3(25),
the ground state of a system is unambiguously de-
scribed by the 2-matrix g2 which originates from
G0 � DN. This matrix can be determined by minimiza-
tion of the functional

E = Ev
n [g1, g2] = tr (hv g1) + tr (g g2), (26)

which depends on two variables g1 and g2 interrelated
through Eq. (23). In fact, either of these variables can
be regarded as independent; therefore, minimization
of the functional can be performed in two ways.

The g2 matrix is an N-representable ensemble if at
least one G � DN ensemble conforms to Eq. (22).
Let PN be a convex set of such 2-matrices. The
mapping of DN onto PN, specified by Eq. (22), is
multivalued, so that DN can be divided into noninter-
secting equivalence classes

DN = � DN (g2), (27)
g2�PN

where DN (g2) is a class of ensembles generating one
2-matrix g2. By definition of DN (g2) � DN (E) with
an energy E, obtained with g2 by Eqs. (18)3(23), the
equivalence class of the G0 matrix contains no other
elements but G0. However, generally speaking, equiv-
alence classes of the other pure states of a system are
infinite (except for the equivalence class of GM3 1).
It should be noted once more that two ensembles
belonging to a single equivalence class differ by the
propabilities wk, but, taking into account their equal
energies and the same spin symmetry, they are
indetical in terms of the variational procedure under
consideration.

Likewise, the g1 matrix is an N-representable
ensemble provided that there exists at least one
G � DN ensemble which conforms to Eq. (21). Let
NN be a convex set of such 1-matrices. A multivalued
mapping of PN onto NN, specified by Eq. (23), gen-
erates division of PN into nonintersecting equivalence
classes

PN = � PN (g1), (28)
g1�NN

where PN (g1) is a class of 2-matrices (N-representable
ensembles) giving rise to one 1-matrix g1. It is import-
ant that equivalence class of 2-matrix of the ground
state can contain other elements in addition to that
matrix. In other words, 1-matrix g1, being an N-re-
presentable matrix G0, can also be obtained from
the other ensembles belonging to DN. This is consist-
ent with the fact that 1-matrix itself determines neither
energy nor spin symmetry of a state. Comparison of
Eqs. (27) and (28) gives

DN = � � DN (g2).
g1�NN g2�PN (g1)

Equations (27) and (28) make it possible to search
for the minimal value of functional Ev

n [g1, g2], which
is set by Eq. (26), in two ways. The first of these is
based on variational principle (29):

E0 = inf Ev
n [g1, g2] = inf {tr (hv g1) + tr (g g2)}.

g2�PN g2�PN (29)

Here, g1 is calculated by Eq. (23) for each g2
belonging to PN. The use of g2 as independent variable
implies that the conditions for N-representability of
the g2 ensemble are formulated in the explicit form.
This complex problem has not been solved so far
[24326]. The second approach utilizes the Levy3Lieb
two-step variational principle [27, 28] in the form
proposed by Valone [16, 17]:
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E0 = inf inf Ev
n [g1, g2]

g1�NN g2�PN (g1)

= inf {tr (hv g1) + inf tr (g g2)}. (30)
g1�NN g2�PN (g1)

In this case, the main difficulty is to conserve the
functional N-representability at the stage of g2 varia-
tion [29, 30], i.e., search for the minimal value of
tr (g2) should be performed within the equivalence
class PN (g1 + dg1) for each g1 + dg1 belonging to NN.
Such a constraint is improbable to be set at all. The
Levy3Lieb3Valone variational principle (30) underlies
the density matrix functional theory, and the Don-
nelly3Parr theory [15] can be regarded as its approxi-
mate version. The problem of functional N-represent-
ability is solved by introducing the approximation

inf tr (g g2) = QDP[g1], \/- g1 = ~g1 + d g1, (31)
g2�PN (g1)

which is assumed to be valid at least in an infinite-
simal neighborhood of the energy minimum

E0 = inf En
DP [g1] = inf {tr (hv g1) + QDP [g1]}

g1�NN g1�NN (32)

reached with the matrix ~g1. It was postulated that
variational principle (32) ensures attainment of upper
limit (14) with ~g1 originating from the ground state
density matrix G0 provided that the precise functional
QDP[g1] is used. Equation (31) is assumed to be
universal since QDP[g1] has only one algebraic form,
regardless of the number of electrons and spin sym-
metry of a system. Thus the Donnelly3Parr theory
can be regarded as variational if a [precise] universal
functional QDP[g1] exists, i.e., if such a parametriza-
tion of the two-electron part of precise energy func-
tional (26) can be found, which makes Eq. (31) valid
for any N-representable 1-matrix belonging to the
range of variation of g1. However, the Donnelly3Parr
theory implies no recipes for searching for such
a functional. Moreover, its existence does not follow
from any theorem of the density matrix functional
theory, i.e., it cannot be proved rigorously. At present,
numerous parametrizations for the Donnelly3Parr
functional are known, whose quality can be estimated
by the trial-and-error method.

Before deducing the Euler3Lagrange equations
for systems with open and closed shells, one should
remember that g1 is determined by two spin com-
ponents:

g1(r, 1/2; r`, 1/2) = r1
aa(r; r`)

and

g1(r, 31/2; r`, 31/2) = r1
bb(r; r`),

which are equated to Hermitean kernels of one-elec-
tron density operators r1

a and r1
b active in En. The

eigenfunctions and eigenvalues of these operators can
be determined from Eqs. (33):

Ir1
ss(r; r`) fi

s(r`)§ r` = f i
s fi

s(r), i = 1, ..., n, s = a, b.
(33)

By setting an orthonormal basis in En, we obtain
matrix representations of the operators r1

a and r1
b

n n

r1
ss(r; r`) = S SPs

ijji (r)jj
*(r`), s = a, b,

i=1 j=1

with Hermitean matrices (34):

Pa = [Pij
a] = [<i³r1

a³j>]; (34a)

Pb = [Pij
b] = [<i³r1

b³j>]. (34b)

Provided that a basis in En has been set, g1 is
unambiguously specified by matrices (34), and the
En

DP[g1] functional becomes a function of Pa and Pb,
regardless of the QDP[g1] form used. Then, the varia-
tional derivatives of En

DP[g1] with respect to r1
aa and

r1
bb can be expressed through kernels of the Hermitean

operators ha and hb acting in En. These kernels are
given by the equations

n n

hs (r; r`) = S SHs
ijji (r)jj

*(r`), s = a, b,
i=1 j=1

with Hermitean matrices (35):

� §E �
Ha = [Hij

a] = [<i³h1
a³j>], <i³h1

a³j> = �ÄÄÄ� ;
�§Pij

a
�g1 = ~

g1

(35a)
� §E �

Hb = [Hij
b] = [<i³h1

b³j>], <i³h1
b³j> = �ÄÄÄÄ� .

� §Pij
b �g1 = ~

g1

(35b)

The conditions for N-representability of g1 by
an ensemble are written as follows [24, 31]:

0 < f i
s < 1, i = 1, ..., n, s = a, b. (36)

In addition, normalization requirement (37) and
spin purity condition (38) must be set:

tr (r1
aa) + tr (r1

bb) = N; (37)

tr (r1
aa) 3 tr (r1

bb) = 2M. (38)
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Constraint (38) follows from Eq. (25b), and it is
necessary for the spin projection value (M) to remain
constant upon variation. It should be noted that this
constraint was not taken into account by Donnelly
and Parr [15]; therefore, the Euler3Lagrange equation
obtained by these authors and expressed through g1
itself is applicable only to systems with closed shells,
for which constraint (38) becomes redundant.

In keeping with [15], let us suppose that all eigen-
values of the 1-matrix ~g1 corresponding to the
minimum of En

DP[g1] are fractional, i.e., they belong to
open interval (0, 1). This unproved but quite reason-
able assumption becomes very important in the
Donnelly3Parr theory [15317]. First, it ensures the
existence of a continuously differentiable function of
matrix elements of the operators r1

a and r1
b at the

minimum point. Second, it provides the possibility
for deducing Euler3Lagrange equations without taking
into account constraints (36); the latter should be met
by themselves if En

DP[g1] has a minium on the set NN.
By applying normalization requirement (37) with the
Lagrange multiplier m (which is equated to the elec-
tron CP of the ground state of a system) and spin
purity condition (38) with the Lagrange multiplier l
(which makes no physical sense in the framework of
the density functional theory), we obtain Euler3
Lagrange equations (39):

haca (r) = maca (r), \/-ca (r) � En; (39a)

hbcb (r) = mbcb (r), \/-cb (r) � En. (39b)

Here,

m = 1/2(ma + mb), l = 1/2(ma 3 mb).

Equations (39) directly follow from the matrix
equations

Ha = ms I, Iij = dij, s = a, b, (40)

which were derived from the condition

n §W
dW(Pa, Pb) = S SÄÄÄ§Ps

kl = 0, s = a, b,
s k, l§Ps

kl

for the auxiliary function

� n �
W (Pa, Pb) = En

DP(Pa, Pb) + m �N 3 S (Pa
kl + Pb

kl) <l³k> �
� k, l �

� n �
+ l �2M 3 S (Pa

kl 3 Pb
kl) <l³k> �.

� k, l �

Each of the matrices Ha and Hb is a function of
Pa and Pb; the optimal Pa and Pb (which correspond

to g1 = ~g1) satisfy Eqs. (40). Thus variational problem
(32) is reduced to iterative solution of two matrix
equations (40) with respect to Pa and Pb. Canonical
orbitals of an open-shell system are defined by the
following equations:

(har1
a) fi

a (r) = ei
a fi

a (r), ei
a = ma f i

a, i = 1, ..., n;

(hbr1
b) fi

b (r) = ei
b fi

b (r), ei
b = mb f i

b, i = 1, ..., n.

These equations should be regarded as extension of
Eqs. (5) obtained by Donnelly and Parr [15] for the
case of spin compensation. By identifying degenerate
eigenvalues of the operators ha and hb with the orbital
electron CPs m1

a and m1
b, respectively, Eq. (6) may be

rewritten as

§E
mi
s = ÄÄÄ = ms, i = 1, ..., n, s = a, b. (41)

§ f i
s

Expression (41) demonstrates leveling of the orbital
electron CPs within each spin subsystem. From the
viewpoint of thermodynamics, Eqs. (41) seem to be
at least surprising, for it is not clear why there is
no equilibrium between the a- and b-electron sub-
systems. It is also unclear how can Eqs. (41) be coor-
dinated with the concept of group EN, which is based
on the principle of leveling of CPs of orbitals forming
covalent bonds between atoms [3].

In the case of spin compensation, the spin com-
ponents of the 1-matrix g1 identically coincide with
each other; therefore, the Donnelly3Parr energy func-
tional for closed-shell systems is a function of the
matrix P which is a one-electron density operator r1
with the kernel

n n

r1 (r; r`) = S SPijji (r)jj
*(r`)

i=1 j=1

normalized with respect to the number of electrons N.
In this case, the Euler3Lagrange equation looks as
follows:

hc (r) = mc (r), \/-c (r) � En, h � En, (42)

where h is a Hermitean operator with the matrix

� §E �
H = [Hij] = [<i³h³j>], <i³h³j> = �ÄÄÄ� ,

�§Pij�g1 = ~
g1

and m is the electron CP. Obviously, in the case of
spin compensation h = ha = hb and m = ma = mb. The
operator h matrix fits the equation
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H = m I, (43)

from which optimal P and electron CP of a system
can be determined. Canonical orbitals of a closed-
shell system are defined by Eqs. (5).

Determination of the optimal matrix P and
Lagrange multipliers in different approximations.
In this section we consider only closed-shell systems.
In the simplest case, the main problem of the Don-
nelly3Parr theory is reduced to determination of such
universal relationship between the 2- and 1-matrices
r2(r1; r2) and r1(r; r`) of the ground state which would
give rise to a reasonable parametrization of two-elec-
tron interactions in the system. An analogous problem
is solved in terms of the approximate density func-
tional theory which was formulated first for hetero-
geneous electron gas [13]. Insofar as the density func-
tion r(r) is a diagonal part of the 1-matrix r1(r; r`),
all energy functionals developed in the framework of
the approach described in [13] can be regarded as
approximate representations of the Donnelly3Parr
functional for systems with closed shells. For instance,
in the local density approximation,

QDP[r1] = I f (r,r)r (r)§ r, (44)

where f (r,r) is a function of r and r(r) = r1(r; r).
Nonlocal approximation (45) is an obvious extension
of Eq. (44), which can be used in terms of the density
matrix functional theory:

QDP[r1] = I § r2 I f (r1, r2,r1)r1 (r1, r2)§ r1. (45)

Here, f (r1, r2,r1) is a function of r1, r2, and
r1 (r1; r2). In this section we consider Euler3Lagrange
equations for Donnelly3Parr energy functions in the
local density approximation (44) and in the Hartree3
Fock approximation which is a particular case of non-
local approximation (45). According to the local
density approximation, the energy functional may be
given as follows:

E = I fr1 (r1, r`1)§ r1;
r`1 =r1

1 1 r(r2)
f = 3ÄB1

2 + v (r1) + Ä IÄÄÄÄÄÄÄÄ§ r2 + exc(r).
2 2 ³r1 3 r2³

The latter term in the expression for one-electron
Hermitean operator f is the exchange3correlation
energy per electron [32334]. Using the atomic orbital
basis

n

jk (r) = S Sik
31/2ci (r)

i=1

orthogonalized by symmetrization we obtain matrix
representation of the energy functional [Eq. (46)].

n � 1 1 n �
E = S Pkl �<k³3ÄB2

1 + v (r) + exc(r)³l > + ÄSPij<ki³lj>� ,
k, l � 2 2 i, j �

(46)
1

<ki³lj> = I I jk
*(r1)ji

*(r2)ÄÄÄÄÄÄÄÄjl (r1)jj (r2)§ r1 § r2.
³r1 3 r2³

Thus matrix representation makes the energy func-
tional a function of matrix elements Pkl. Differentia-
tion of Eq. (46) with respect to Pkl gives matrix H
in Eq. (43) with the elements defined by Eq. (47):

1
Hkl = <k³3ÄB2

1 + v (r) + exc(r)³l >
2

n � § exc �
+ SPij �<ki³lj> + <ki³ÄÄÄÄ³lj>� , (47)

i, j � §r �

§ exc § exc<ki³ÄÄÄÄ³lj> = I jk
*(r1)ji

*(r1)ÄÄÄÄjl (r1)jj (r1)§ r1.
§r §r

Hence the Donnelly3Parr operator h in the local
density approximation is determined by Eq. (48):

1 r (r2)
h = 3ÄB1

2 + v (r1) + exc (r) + IÄÄÄÄÄÄÄÄ§ r22 ³r1 3 r2³
§ exc(r)

+ r (r1)ÄÄÄÄÄÄ . (48)
§r (r1)

When expressed through optimal r(r), this operator
fits Eq. (42), i.e., it has a single eigenvalue equal
to m. The energy functional with the Hartree3Fock
exchange energy may be written as follows:

1
E = I 3ÄB1

2r1 (r1; r`1)§ r1 + I v(r1)r (r1)§ r1
r`1 =r1 2

1 r (r1) r (r2) 1 r1(r1; r2)r1(r2; r1)
+ Ä I IÄÄÄÄÄÄÄÄ§ r1§ r2 3 Ä I IÄÄÄÄÄÄÄÄÄÄÄÄÄ§ r1§ r2.

2 ³r1 3 r2³ 2 ³r1 3 r2³

In the matrix representation, the energy is given by
expression (49):

n � 1 1 n

E = SPkl �<k³3ÄB2 + v (r)³l > + ÄSPij <ki³lj>
k, l � 2 2 i, j

1 n �
3 ÄSPij <ki³jl >� . (49)

4 i, j �

Then, the matrix H in Eq. (43) consists of elements
(50) and is a matrix of nonlocal operator (51):
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1 n � 1 �
Hkl = <k³3ÄB2

1 + v (r1)³l > + SPij �<ki³lj> 3 Ä<ki³jl>� ;
2 i, j � 2 �

(50)

1� r(r2) �
hj (r1) = �3ÄB1

2 + v (r1) + IÄÄÄÄÄÄÄÄ§ r2 �j (r1)
2� ³r1 3 r2³ �

1 r1 (r1; r2)
3 Ä IÄÄÄÄÄÄÄÄj (r2)§ r2. (51)

2 ³r1 3 r2³

Operator (51) expressed through optimal r1(r; r`)
fits Eq. (42), i.e., it has a single eigenvalue equal to m.

Taking into account that operators (48) and (51) in
different bases identically coincide with each other,
i.e., they are invariant with respect to basis trans-
formations, Eq. (43) for the basis of nonorthogonal
atomic orbitals ck(r) may be written as

H = m S, Skl = <k³l >. (52)

Using Eq. (52) with the matrices H defined by
Eqs. (47) and (50), we can formulate an algorithm for
simultaneous determination of the optimal matrix P
in the atomic orbital basis ck (r) and the Lagrange
multiplier m. In the local density approximation,
Eq. (52) supplemented by the normalization require-
ment with respect to r1 can be regarded as a linear
system of n 2 + 1 equations

n � § exc �
S �<ki³lj> + <ki³ÄÄÄÄ³lj>�Pij 3 Skl m
i, j � §r �

1
= <k³3ÄB2

1 + v (r1) + exc(r)³l >, k, l = 1, ..., n;
2

(53a)
n

SSij Pij = N (53b)
i, j

with n 2 + 1 indeterminates (elements of Pij and m).
It remains only to verify whether this system can be
solved with respect to a set of symmetric positively
defined density matrices. The symmetry conditions
may be applied by assuming Pij = Pji and reducing
system (53) to linear equation system (54):

n

S Akl, ij Pij 3 Skl m = 3Bkl , k < l = 1, ..., n; (54a)
i< j

n

S (2 3 dij) Sij Pij = N. (54b)
i< j

The coefficients Akl, ij and Bkl, which constitute
an [m0m]-dimensional matrix A and an m-dimen-

sional column B with m = n(n + 1)/2, are determined
by the following expressions:

� § exc �
Akl, ij = (2 3 dij) �<ki³lj> + <ki³ÄÄÄÄ³lj>� ;

� §r �

1
Bkl = <k³3ÄB2

1 + v (r1) + exc(r)³l >.
2

In the Hartree3Fock approximation, system (54)
has the following coefficients:

� 1 �
Akl, ij = �<ki³lj> 3 Ä<ki³jl >�

� 2 �

� 1 �
+ (1 3 dij) �<kj³li> 3 Ä<kj³il >� ;

� 2 �

1
Bkl = <k³3ÄB2

1 + v (r1)³l >.
2

System (54) is a linear system of m + 1 equations
for determination of m unknown elements Pij (i < j)
and m. Solutions of this system (if exist) belong to
a set of real symmetric density matrices, where posi-
tively defined density matrix constitutes a subset.
System (54) can be solved by numerical methods. In
the local density approximation, the matrix A and the
column B depend on the density function, and system
(54) is solved iteratively:

(1) The original density matrix is determined by
the formula

P = T LL T`,

where matrix T is an [n0n]-dimensional matrix for
transformation of real basis functions to the Kohn3
Sham orbitals [14, 35], and diagonal matrix LL is
a matrix consisting of the occupation numbers of the
Kohn3Sham orbitals. The choice of matrix LL is fairly
arbitrary. We considered two versions of determina-
tion of LL: (a) the original density matrix was calcu-
lated with LL corresponding to the Kohn3Sham one-
determinant wave function and (b) all elements of LL
were set equal to N/n. We obtained a test matrix r1
whose eigenvalues belong to the open interval (0, 2).

(2) The coefficients Akl, ij and Bkl are calculated
with the original density function.

(3) By solving system (54), a new density matrix
and m are found. The coefficients Akl, ij and Bkl and
Hkl are then calculated with the new density function.

(4) The iteration is terminated when the inequality
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1 n � Hkl �2
ÄÄÄÄÄ S �ÄÄÄ 3 m � < d
m 3 1k < l � Skl �

is fulfilled. Otherwise, we turn back to step (3). The
proposed algorithm was applied in the framework of
the zero two-atom differential overlap approximation
on the basis of MOPAC 6.0 semiempirical quantum-
chemical program [36], which was supplemented by
the Kohn3Sham calculation procedure [14, 35] in the
local density approximation [34]. While selecting
numerical integrating network for the exchange3cor-
relation part of the Kohn3Sham matrix, we followed
the recommendations given in [37]. According to
these recommendations, the molecular integrant was
divided into atomic contributions by the Becke
scheme [38]; for spherical and radial integration of
each contribution we used, respectively, improved
[37] Lebedev’s network with 434 nodes necessary for
precise integration of all spherical harmonics of
an order of 35 (l < 35) and second-genus Chebyshev’s
quadrature in combination with M4 mapping (see
[37]) onto the standard finite interval (a = 1, a = 0.6;
values of x were taken from Table 1 in [37]) with 35
(H, He), 40 (Li3Ne), 45 (Na3Ar), and 50 (K3Kr)
radial points. This quadrature ensures an error not
exceeding 1038 in the integration of density functions.
In the calculations we used molecular geometric
parameters optimized by the original version of
MOPAC 6.0. The density matrix elements and the
Lagrange multiplier m for one or another molecule
were determined in the local density and Hartree3
Fock approximation through pseudoinversion of the
[m + 10m + 1]-dimensional matrix of system (54) via
singular decomposition [39]. In each case, the only
solution was obtained.

The results of calculations for some molecules are
presented in table, where EHF and ELDA stand for the
electron energies calculated in the zero two-atom dif-
ferential overlap with the Fock operator and with
the Kohn3Sham operator, respectively. The Lagrange
multipliers m and the occupation numbers of natural
orbitals, determined in terms of each of the above two
approximations, correspond to solutions of system
(54). It is seen that some occupation numbers of final
1-matrices r1 have negative values. In other words,
in all cases the final density matrix P is not a posi-
tively defined matrix.

Results and discussion. As we already noted in
the first section of this paper, the Donnelly3Parr
theory is based on the assumption that there exists
a universal QDP functional which fits Eq. (31). The
authors gave no indications as to how such a func-
tional can be found. We thought it reasonable to

emphasize once more that the Donnelly3Parr varia-
tional principle (32) may be used only when Eq. (31)
is fulfilled for any N-representable 1-matrix (by
an ensemble) belonging to the range of variation of
g1. The latter statement cannot be proved rigorously,
and its validity seems to be fairly doubtful. However,
it is also impossible to prove that this statement is
invalid. Thus the problem concerning the existence of
a precise universal functional QDP[g1] remains open.

In this situation, the left part of Eq. (31) should
be regarded as unrepresentable by a functional from
1-matrix unless the reverse has been proved. In other
words, we believe that any conceivable algebraic form
of QDP[g1] is only an approximation of precise energy
functional (26). Obviously, the use of approximate
functionals in the two-step variational procedure (30)
leads to violation of functional N-representability, so
that Eq. (15) could not be fulfilled. This means that
such a procedure can no longer be regarded as varia-
tional, and the calculated energy may be below the
precise value [20]. Moreover, one cannot rule out that
the functional has no minimum at all in the set of
N-representable 1-matrices, regardless of the QDP[g1]
used. The probability for such situation may be es-
timated from the results of our calculations. However,
final answer to this question cannot be obtained, for
the number of possible QDP[g1] representations is
infinite.

It should be emphasized that no acceptable expres-
sion for QDP[g1] has been developed as yet, i.e., the
validity of Eqs. (5) and (6) has not been proved.
Therefore, physical extensions of the Donnely3Parr
theory should be treated with much care. This con-
cerns mainly the concept of orbital CP leveling and
the Sanderson principle of leveling of atom ENs,
which cannot be substantiated at present in terms
of the density functional theory.

To conclude, let us consider briefly possible ways
of estimating the electron CP in terms of the density
functional theory. First of all we should note the strict
variational procedure described in [40342], accord-
ing to which electron CP is defined as the Lagrange
multiplier at the normalization requirement to the
density functions; it can be calculated together with
the ground-state density function of a system. Un-
fortunately, this rigorous theory utilizes extremely
complex equations which can be solved only for the
simplest atoms [43, 44]. Up to now, all practical
calculations of the electronic structure of atoms,
molecules, and radicals in terms of the density func-
tional theory are performed by the Kohn3Sham proce-
dure [14, 35]. It is based on the assumption that the
ground-state density function of a real system is equal
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Results of ZDO calculations
ÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÂÄÄÄÄÄÄÂÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Molecule³ ELDA ³ EHF ³ mLDA ³ mHF ³ Occupation numbers in LDA ³ Occupation numbers in HF
ÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÅÄÄÄÄÄÄÅÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

H2O ³ 3514.58 ³ 3500.51 ³ 36.00 ³ 377.83 ³3202.89, 359.38, 32.17, 8.32,³363.78, 314.54, 310.29, 29.33,
³ ³ ³ ³ ³ 88.23, 175.89 ³ 30.67, 36.61³ ³ ³ ³ ³ ³

H2S ³ 3374.04 ³ 3372.03 ³ 39.53 ³ 339.83 ³3150.62, 39.81, 0.3, 3.31, 79.75,³388.82, 327.06, 312.75, 32.22,
³ ³ ³ ³ ³ 85.07 ³ 52.01, 52.4³ ³ ³ ³ ³ ³

H3N ³ 3447.49 ³ 3438.08 ³ 34.36 ³ 312.27 ³3216.78, 335.6, 335.6, 4.69, 77.43,³33.14, 0.69, 0.77, 0.77, 2.96,
³ ³ ³ ³ ³ 77.43, 136.43 ³ 2.96, 2.99³ ³ ³ ³ ³ ³

H3P ³ 3350.22 ³ 3347.12 ³ 39.44 ³ 39.50 ³3175.36, 30.24, 30.24, 1.44, 28.38,³32.64, 0.63, 0.63, 0.95, 2.77,
³ ³ ³ ³ ³ 77.01, 77.01 ³ 2.83, 2.83

ÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÁÄÄÄÄÄÄÁÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

to that of an imaginary system of noninteracting elec-
trons which move in the effective potential field. In
the framework of this approach, the ground-state
density function of an N-electron system is determined
through variation of the form of N one-electron spin-
orbitals which met the orthonormality condition (the
occupation numbers of spin-orbitals are fixed and are
equal to 0 or 1, which ensures N-representability of
test density functions). Provided that the orthonormal-
ity of spin-orbitals is retained, the stationary condition
for the energy functional is ensured by solving
N orbital equations. It follows from the above stated
that, in terms of the Kohn3Sham procedure, electron
CP of a system is not used as Lagrange multiplier and
that its identification with eigenvalue of Nth orbital
[45] is at least questionable [46350]. Therefore, the
calculation of electron CP by interpolation formula (2)
still remains the only way to estimate this quantity.

This study was financially supported by the
[Universities of Russia] Scientific and Technical
Program.
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